80 research outputs found

    Working towards an Improved Monitoring Infrastructure to support Disaster Management, Humanitarian Relief and Civil Security

    Get PDF
    Within this paper experiences and results from the work in the context of the European Initiative on Global Monitoring for Environment and Security (GMES) as they were gathered within the German Remote Sensing Data Center (DFD) are reported. It is described how data flows, analysis methods and information networks can be improved to allow better and faster access to remote sensing data and information in order to support the management of crisis situations. This refers to all phases of a crisis or disaster situation, including preparedness, response and recovery. Above the infrastructure and information flow elements, example cases of different crisis situations in the context of natural disasters, humanitarian relief activities and civil security are discussed. This builds on the experiences gained during the very active participation in the network of Excellence on Global Monitoring for Stability and Security (GMOSS), the GMES Service Element RESPOND, focussing on Humanitarian Relief Support and supporting the International Charter on Space and Major Disasters as well as while linking closely to national, European and international entities related to civil human security. It is suggested to further improve the network of national and regional centres of excellence in this context in order to improve local, regional and global monitoring capacities. Only when optimum interoperability and information flow can be achieved among systems and data providers on one hand side and the decision makers on the other, efficient monitoring and analysis capacities can be established successfully

    An Adaptive and Extensible System for Satellite-Based, Large Scale Burnt Area Monitoring in Near-Real Time

    Get PDF
    In the case of ongoing wildfire events, timely information on current fire parameters is crucial for informed decision making. Satellite imagery can provide valuable information in this regard, since thermal sensors can detect the exact location and intensity of an active fire at the moment the satellite passes over. This information can be derived and distributed in near-real time, allowing for a picture of current fire activity. However, the derivation of the size and shape of an already affected area is more complex and therefore most often not available within a short time frame. For urgent decision making though, it would be desirable to have this information available in near-real time, and on a large scale. The approach presented here works fully automatic and provides perimeters of burnt areas within two hours after the satellite scene acquisition. It uses the red and near-infrared bands of mid-resolution imagery to facilitate continental-scale monitoring of recently occurred burnt areas. To allow for a high detection capacity independent of the affected vegetation type, segmentation thresholds are derived dynamically from contextual information. This is done by using a Morphological Active Contour approach for perimeter determination. The results are validated against semi-automatically derived burnt areas for five wildfire incidents in Europe. Furthermore, these results are compared with three widely used burnt area datasets on a country-wide scale. It is shown that a high detection quality can be reached in near real-time. The large-scale inter-comparison shows that the results coincide with 63% to 76% of the burnt area in the reference datasets. While these established datasets are only available with a time lag of several months or are created by using manual interaction, the presented approach produces results in near-real time fully automatically. This work is therefore supposed to represent a valuable improvement in wildfire related rapid damage assessment

    Utilization of hyperspectral remote sensing imagery for improving burnt area mapping accuracy

    Get PDF
    Wildfires pose a direct threat when occurring close to populated areas. Additionally, their significant carbon and climate feedbacks represent an indirect threat on a global, long-term scale. Monitoring and analyzing wildfires is therefore a crucial task to increase the understanding of interconnections between fire and ecosystems, in order to improve wildfire management activities. This study investigates the suitability of 232 different red / near-infrared band combinations based on hyperspectral imagery of the DESIS sensor with regard to burnt area detection accuracy. It is shown that the selection of wavelengths greatly influences the detection quality, and that especially the utilization of lower near-infrared wavelengths increases the yielded accuracy. For burnt area analysis based on the Normalized Difference Vegetation Index (NDVI), the optimal wavelength range has been found to be 660 - 670 nm and 810 - 835 nm for the red band and near-infrared band, respectively

    Assessment of wildfire activity development trends for Eastern Australia using multi-sensor earth observation data

    Get PDF
    Increased fire activity across the Amazon, Australia, and even the Arctic regions has received wide recognition in the global media in recent years. Large-scale, long-term analyses are required to postulate if these incidents are merely peaks within the natural oscillation, or rather the consequence of a linearly rising trend. While extensive datasets are available to facilitate the investigation of the extent and frequency of wildfires, no means has been available to also study the severity of the burnings on a comparable scale. This is now possible through a dataset recently published by the German Aerospace Center (DLR). This study exploits the possibilities of this new dataset by exemplarily analyzing fire severity trends on the Australian East coast for the past 20 years. The analyzed data is based on 3,503 tiles of the ESA Sentinel-3 OLCI instrument, extended by 9,612 granules of the NASA MODIS MOD09/MYD09 product. Rising trends in fire severity could be found for the states of New South Wales and Victoria, which could be attributed mainly to developments in the temperate climate zone featuring hot summers without a dry season (Cfa). Within this climate zone, the ecological units featuring needleleaf and evergreen forest are found to be mainly responsible for the increasing trend development. The results show a general, statistically significant shift of fire activity towards the affection of more woody, ecologically valuable vegetation

    The DLR FireBIRD Small Satellite Mission: Evaluation of Infrared Data for Wildfire Assessment

    Get PDF
    Wildfires significantly influence ecosystem patterns and processes on a global scale. In many cases, they pose a threat to human lives and property. Through greenhouse gas emissions, wildfires also directly contribute to climate change. The monitoring of such events and the analysis of acquired data is crucial for understanding wildfire and ecosystem interactions. The FireBIRD small satellite mission, operated by the German Aerospace Center (DLR), was specifically designed for the detection of wildfires. It features a higher spatial resolution than available with other Earthobservation systems. In addition to the detection of active fire locations, the system also allows the derivation of fire intensity by means of the Fire Radiative Power (FRP). This indicator can be used as a basis to derive the amount of emitted pollutant, which makes it valuable for climate studies. With the FireBIRD mission facing its end of life in 2021, this study retrospectively evaluates the performance of the system through an inter-comparison with data from two satellite missions of the National Aeronautics and Space Administration (NASA) and discusses the potential of such a system. The comparison is performed regarding both geometrical and radiometric aspects, the latter focusing on the FRP. This study uses and compares two different methods to derive the FRP from FireBIRD data. The data are analyzed regarding six major fire incidents in different regions of the world. The FireBIRD results are in accordance with the reference data, showing a geometrical overlapping rate of 83% and 84% regarding MODIS (Moderate-resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) overpasses in close temporal proximity. Furthermore, the results show a positive bias in FRP of about 11% compared to MODIS

    Automatic near-real time flood extent and duration mapping based on multi-sensor Earth Observation data

    Get PDF
    In order to support disaster management activities related to flood situations, an automatic system for near-real time mapping of flood extent and duration using multi-sensor satellite data is developed. The system is based on four fully automatic processing chains for the derivation of the inundation extent from Sentinel-1 and TerraSAR-X radar as well as from optical Sentinel-2 and Landsat data. While the systematic acquisition plan of the Sentinel-1/2 and Landsat satellites allows a continuous monitoring of inundated areas at an interval of a few days, the TerraSAR-X processing chain has to be triggered on-demand over the disaster-affected areas. Beside flood extent masks, flood duration products are generated to indicate the temporal stability and evolution of flood events. The flood monitoring system is demonstrated on a severe flood situation in Mozambique related to cyclone Idai in 2019

    Research products across space missions: a prototype for central storage, visualization and usability

    Get PDF
    For planetary sciences, the main archives to archived access to mission data are ESA's Planetary Science Archive (PSA) and the Planetary Data System (PSA) nodes in the USA. Along with recent and upcoming planetary missions the amount of different data (remote sensing/in-situ data, derived products) increases constantly and serves as basis for scientific research resulting in derived scientific data and information. Within missions to Mercury (BepiColombo), the Outer Solar System moons (JUICE), and asteroids (NASA`s DAWN), one way of scientific analysis, the systematic mapping of surfaces, has received new impulses, also in Europe. These systematic surface analyses are based on the numeric and visual comparison and combination of different remote sensing data sets, such as optical image data, spectral-/hyperspectral sensor data, radar images, and/or derived products like digital terrain models. The analyses mainly results in map figures, data, and profiles/diagrams, and serves for describing research investigations within scientific publications
    corecore